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Abstract – The field of robotics has evolved from 
industrial robots in the 1960s to entertainment and 
service robots in the 2000s. During the last decade, 
major progress has been made in integrating a 
robotic body with sensors and AI-based software. In 
this paper, we describe our efforts to realize a next 
generation of intelligent robots called cognitive 
robots. Our work is embedded within a 
multiagent-based cognitive robot architecture with 
three distinctive memory systems: short-term and 
long-term memory structures for routine task 
execution and a working memory system (WMS) 
which is closely tied to learning and execution of 
tasks.  The concept of WMS is relatively new in 
robotics and is expected to play a similar role of the 
prefrontal cortex (PFC) of our brain that performs 
cognitive tasks. 
 
 

I. INTRODUCTION 
 
In recent years, design philosophies in the field of 

robotics have followed the classic dialectic.  Initial 
efforts to build machines capable of perceiving and 
interacting with the world around them involved 
explicit knowledge representation schemes and 
formal techniques for manipulating internal 
representations. Tractability issues gave rise to 
antithetical approaches, in which deliberation was 
eschewed in favor of dynamic interactions between 
primitive reactive processes and the world [1] [2].  
Many studies have shown the need for both, 
motivating work towards hybrid architectures [3]. 
While such an integration of robotic body and 
sensors offers the promise of robots which are fluent 
in routine operations, we hypothesize that  
responding to the full range of contingencies often 
present in complex tasks will require something 
more than the combination of these design 
approaches. Specifically, we see cognitive 

flexibility and adaptability arising from 
self-knowledge and processes that can analyze and 
modify the very mechanisms that support both 
reactive action and careful  deliberation. We call this 
“robotic body-mind integration”. Thus, a fully 
cognitive robot should be able to recognize 
situations in which its reactive and reasoning 
abilities fall short of meeting task demands, and it 
should be able to make modifications to those 
abilities in hopes of improving the situation [4]. 

In this paper, we describe details of a cognitive 
robot architecture with three distinctive memory 
systems: short-term and long-term memories and a 
working memory system.  We define short-term 
memory to be sensor-driven and typically lasts for 
minutes. Long-term memory can persist indefinitely 
and contains information such as skills and semantic 
knowledge. A working memory system (WMS) 
allows the robot to focus attention on the most 
relevant features of the current task and is closely 
tied to the learning and execution of tasks [5]. 

 
 

II.  MULTIAGENT-BASED COGNITIVE  
ROBOT ARCHITECTURE 

 
 A humanoid robot is an example of a robot that 
may require intelligent behavior to act with 
generality in its environment and adapt its behaviors 
to accomplish tasks. As the complexity of an 
interaction grows, so grows the complexity of the 
software necessary to process sensory information 
and to control action purposefully. The development 
and maintenance of complex software systems can 
benefit from domain-specific guidelines that 
promote code reuse and integration.  Information 
processing in our humanoid robot ISAC, is 
embedded within a multiagent-based software 
architecture called the Intelligent Machine 
Architecture (IMA) [6],[7],[8]. The IMA was 

 



designed to provide guidelines and allow for the 
development of subsystems capable of 
environmental modeling and robot control through 
the collections of IMA agents and associated 
memories, as shown in Figure 1. 
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Figure 1: Multiagent-based perception, control and 

memory architecture. 
 

III.  ROBOT MEMORY STRUCTURE 
 
A.   Short-Term Memory: Sensory EgoSphere 

ISAC’s short-term memory (STM) resides in the 
Sensory EgoSphere (SES) [9].  The SES was 
inspired by Albus’ egosphere concept [10]. It is 
defined as a geodesic sphere indexed by azimuth 
and elevation and centered at a robot’s head. The 
SES stores a pointer to information about sensory 
data, its location in the environment, and the time at 
which it was registered. This pointer is connected to 
a vertex on the geodesic dome interface and to a 
record in the database. These vertices form nodes, 
like in a net, that approximate points in the 
environment for simple breadth-first searches.  The 
SES operates asynchronously as an IMA agent. 
Figure 2 depicts the SES and its association with 
high-level agents [6]. 

 
 

 
(a)                (b)  

Figure 2: (a) Sensory EgoSphere and                          
(b) SES association with high-level agents. 

B.  Long-Term Memory: Procedural and 
Declarative Memories 

Long-term memory (LTM) in the brain stores 
information such as skills learned and semantic 
knowledge gained for retrieval in the future. The 
LTM consists of the Procedural Memory (PM) 
representing the former and the Declarative 
Memory (DM) representing the latter. Specifically, 
the PM holds information needed to generate 
actuator motions while DM holds information 
learned about objects in the environment.  

Procedural Memory 
The PM contains behaviors that can be 

combined to perform specific tasks. PM units are 
derived using the spatio-temporal Isomap method 
proposed by Jenkins and Mataric [11]. Figure 3 
illustrates how it is used to generate behaviors [12]. 

Motion data such as how to reach to a point    
are collected from the teleoperation of ISAC. The 
motion streams collected are segmented into a set of 
motion segments. The central idea in the derivation 
of behaviors from motion segments is to discover 
spatio-temporal structure in a motion stream. 

 
Figure 3: Derivation of PM through human-guided 

motion stream. 
 

The interpolation method called the Verbs and 
Adverbs [13] is used to describe a motion (verb) in 
terms of its parameters (adverbs) that allows ISAC 
to generate a new movement based on the similarity 
of stored motions. Adverbs, or parameters, can be 
objective values which allow each set of motions to 
be interpolated in very different ways. This allows 
ISAC to be able to demonstrate new movements 
based on a small number of learned movements. 

Figure 4 depicts a current representation of the 
PM data structure. At the top of this structure, 
meta-level behaviors will be stored which will allow 
us to identify what each behavior can contribute to 
solving a given task. Each entry in the meta-level 

 



behavior table will contain pointers to the 
underlying motion primitives. 

 
Figure 4: Structure of LTM database. 

 
Declarative Memory 
In his Animate Vision paper [14], Ballard states, 

“Animate vision systems can also use 
representations that are heavily personalized to 
achieve efficient behaviors.” In developing the 
Declarative Memory (DM), we are following his 
arguments. For example, besides the name and type, 
we use the exemplar sensor data such as color, the 
last known location, and selected physical 
characteristics to be stored in the DM. This way, the 
WMS (See Section III.C) could bring in the 
minimum set of information from the DM to use to 
complete the task.  

The Declarative Memory units consist of four 
fields: Name, Type, Physical Characteristics, and 
Recognition Information. The Physical Charac- 
teristics field contains information useful to 
cognitive processes, such as can be picked up or 
fragile. The Recognition Information field is a set of 
pointers to structures dealing with the sensor data 
taken in by ISAC. These structures, in turn, contain 
three fields: the filename of the raw data, the section 
of the data dealing with the object, and recognition 
information usable by the perceptual system such as 
color segmentation values or data for Lowe's 
Algorithm [15]. The Object Recognition nodes are 
not restricted to a single sensor modality. For 
example, if a Barney™ doll emitted a high-pitched 
squealing sound, this information could be stored in 
an indexed sound-based Object Recognition node.  
Figure 5 depicts a current representation of the DM 
data structure. 

 

        Figure 5: DM data structure. 
C.  Working Memory System and Attention 

There is much evidence for existence of a 
working memory in primates. It is thought to be 
closely tied to the learning and execution of tasks, as 
it contributes to decision-making capabilities by 
focusing on essential task information and 
discarding distractions [16][17]. A well-known 
working memory test is the "Delayed Match to 
Sample", where a person is shown pictures of horses 
in sequence and asked if they are the same or 
different [18]. 

Inspired by this, we are currently developing a 
working memory system (WMS) model with the 
following objectives: 
� reduce search space dramatically for cognitive 

task execution, 
� provide learning ability for necessary “chunks” 

of information to be retained, 
� change and generalize the context for novel 

situations through the use of artificial neural 
network, and 

� provide the ability to supply task-specific 
“episodic” memory. 
Figure 6 illustrates dataflow among the 

Cognitive Control (See Section IV.A), Working 
Memory System and Perceptive and Motor 
Memories in our implementation. 

 
Figure 6: WMS dataflow. 

 
IV.  COGNITIVE CONTROL AND THE 

CENTRAL EXECUTIVE 
 
A. Cognitive Control 

Robots in the future are expected to exhibit 
robust performance in a wide variety of situations, 
requiring competencies ranging from efficient 
sensorimotor action control in routine situations to 
high-level cognitive control to handle new or 

 



difficult situations as shown in Figure 8 [19].   
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Figure 8: Concept of Cognitive Control [19]. 

 
Cognitive (or executive) control is the “ability 

of the brain to identify possible goals and figure out 
how to achieve them. It is also used to navigate 
complex situations and ignore the distractions and 
impulses that would derail our goal-directed efforts” 
[19].   

In our case, it involves the control of behavior 
in situations when robot’s sensorimotor-based 
routine action execution capabilities fall short of 
meeting task demands. Inspired by the work by 
Wolpert and Kawato [20], we are implementing the 
behavior choosing process using modular 
controllers that involves a central executive module 
and a working memory as shown in Figure 9. 
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Figure 9: Central Executive and Modular Control. 
 

B. Central Executive 
 Cognitive scientists have been developing 

cognitive architectures to model essential elements 
of human cognition. Soar [21] and ACT-R [22] are 
two of the well-known cognitive models using 
production rule systems.  

Some cognitive architectures such as EPIC [23] 
suggest the concept of utilization of cognitive 
processor. A cognitive processor is a conjunction of 
human’s working memory and executive functions.  
Under an NSF grant we are investigating one model 
of such executive functions called the Central 
Executive (CE).   

The CE will be responsible for high-level 
executive functions such as: 
� goal-directed action selection, 
� regulation of working memory, 
� control of the focus of attention, and 
� manipulation of LTM.  
 
Under current implementation, the CE is 

designed to carry out goal-oriented action selection.  
In order to select behaviors, each behavior is 
assigned an estimator and a controller, similarly to 
the concept of modular controller presented in [20].  
The CE uses temporal difference (TD) learning [24] 
and task relevancy modules to choose appropriate 
behaviors.  

TD learning allows the system to learn from past 
experiences based on a reinforcement signal in the 
form of an expected future reward in the current 
situation. The TD learning system loads a small set 
of behaviors into the WMS that it believes to 
produce positive rewards.  

Consequently, only a limited number of 
behaviors are considered for execution at one time 
which allows the CE to rapidly execute tasks. 
Relevancy values will be used to compute weights 
for which will be assigned to each behavior during 
action execution.  

During this process, the focus of attention of the 
environment is handled by the Attention Network 
[9] by putting focus on a particular location of the 
SES based on goal information. 

The current status of the CE mostly regards the 
control of action based on skill information stored in 
the procedural memory section of the LTM.  We are 
investigating to incorporate other knowledge 
information as a part of procedural memory 
similarly to production rules in ACT-R and EPIC. 
Strength of connections among production rules will 
be used in addition to the current calculation of task 
relevancies during action selection.  

Figure 10 shows a simple two-behavior arm 
movement example to illustrate how behaviors are 
combined by finding the sum of vectors A and B 

 



with time-varying weights. 
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Figure10: Implementation of CE’s goal-oriented 

behavior selection process. 
 
V.    SYSTEM PERFORMANCE ANALYSIS  

 
During computational modeling of sensorimotor 

processing for ISAC, we gained new insights about 
the modeling of the Central Executive and the 
Working Memory System.  

Key components within our cognitive robot 
architecture are being tested as shown in Figure 11 
(a) using a set of evaluation tasks.  These tasks are 
robotic analogs to some of the laboratory 
experiments that have been performed with 
monkeys [5]: 
1. ISAC is trained to learn each object in turn by a 

human. (This task illustrates how ISAC 
associates words and features with objects and 
store the date into the STM.)  

2. ISAC is asked to point to one of the objects 
learned. (This task illustrates how the Self Agent 
works with the STM and the Arm Agent to 
execute the command.)  

3. Objects are shuffled and then ISAC is asked to 
point to one object. (This task demonstrates 
ISAC’s perception-to-action mapping using the 
WMS as well as the ability to move the arm 
using modular control as shown in Fig. 11(b).) 

4. One object is covered, ISAC is then asked to 
point to the object. (This step demonstrates the 
goal-oriented   cognitive control for ISAC to 
recognize the absence of the object in its 
immediate sensory input and select appropriate 
actions. 

Results using the WMS will be compared to 
results in a current baseline system of ISAC without 
the WMS. 
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Figure 11: (a) System Performance Analysis and   
(b) Experiment environment. 

 
VI.  CONCLUSIONS 

 
Realization of robots with human-level 

intelligence continues to be the dream of many 
robotic researchers. During the past decade, we have 
seen major advances in the integration of robotics, 
sensor technology and artificial intelligence, and 
expect this trend to continue. However, 
development of robots with human-level 
intelligence which we call cognitive robots will 
require further integration of advances in cognitive 
science, computational neuroscience and linguistics.  
This paper described our efforts towards this 
challenge. 
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