Evaluation of an Enhanced Human-Robot Interface∗

Carlotta A. Johnson Julie A. Adams Kazuhiko Kawamura
Center for Intelligent Systems Center for Intelligent Systems Center for Intelligent Systems
Vanderbilt University Vanderbilt University Vanderbilt University
Nashville, TN 37235 Nashville, TN 37235 Nashville, TN 37235
carlotta.a.johnson@vanderbilt.edu julie.a.adams@vanderbilt.edu kaz.kawamura@vanderbilt.edu

Abstract - A human-robot interface for a mobile robot was extended to include a discrete geodesic dome called a Sensory EgoSphere (SES). The SES is a two-dimensional data structure, centered on the robot’s coordinate frame. The SES provides the robot’s perspective of a remote environment via images, sonar, and laser range finder representations. It was proposed that the SES would enhance the general interface usability by decreasing perceived workload and increasing situational awareness. A human factors evaluation was performed to evaluate the established hypothesis. Novice users participated in the evaluation. The purpose of this paper is to review some of the evaluation results.

Keywords: Sensory EgoSphere, Human-Robot Interface, Graphical User Interface, Workload, Situational Awareness

1. INTRODUCTION

Determining a mobile robot’s present status when the supervisor is located at a remote location can be difficult. A remote supervisor is necessary when environmental hazards or harsh working conditions exist. This paper focuses on a user evaluation of a human-robot interface (HRI) that incorporates a discrete geodesic dome, called the Sensory EgoSphere (SES).

The extraction of environmental information from landmarks and sensor readings is a catalyst for the SES research. The SES links the HRI to the mobile-robot’s short-term memory database. The memory database is indexed by azimuth and elevation. The geodesic dome and associated database are called the Sensory EgoSphere.

The SES is proposed as a viable solution to coordinating distributed sensors during mobile robot navigation [1]. The SES may enhance an HRI by providing a robot-centric display of the robot’s sensory data to the human [2].

It was believed that a graphical based HRI incorporating the SES would provide a more intuitive sensory data display. The SES display permits the user to mentally fuse notable events that occur in close proximity. The display provides the robot’s egocentric view of the environment as the dome is centered on the robot’s frame.

The overall objective of this research was to determine if the addition of a Sensory EgoSphere enhanced a human-robot interface. Two research hypotheses were tested. Hypothesis one stated: The SES decreases participant mental workload with the addition of a more intuitive display of sensory data. The second hypothesis stated: The SES increases participant situational awareness of the robot status and the task/mission status.

This paper discusses the user evaluation that was designed to test the stated hypotheses. Section 2 provides an overview of the SES while Section 3 describes the SES display design and enhanced HRI. Section 4 describes the evaluation’s experimental design. The evaluation results are presented in Section 5. Section 6 provides a discussion of the relevant results and Section 7 provides the conclusions and future work.

2. SENSORY EGOSPHERE

Albus proposed an egosphere. He defined it as “a dense spherical coordinate system with the self (ego) at the origin” [3]. Visible points on regions or objects in the world are projected on the egosphere. Each of us resides at the origin of our own egosphere. Everything humans observe can be represented by a location with an azimuth elevation and range measured from the center of our ego. To the observer, the world is seen through a transparent sphere. Each observed world point appears on the egosphere at a location defined by the azimuth and elevation. This concept was proposed as part of an outline for machine intelligence theory.

The SES definition for this work provides a two-dimensional spherical data structure, centered on a robot’s coordinate frame. The primary difference between this work and Albus’ is that our SES is also a short-term memory used for robot navigation. The SES provides a sparse environmental map containing pointers to objects or event descriptors detected by the robot. As the robot operates, both external and internal events stimulate the robot’s sensors. After the stimulus, the associated sensory processing module writes to the SES at the node closest to the direction from which the stimulus arrived. Sensory data of different modalities, from similar directions at similar times, register close to one another on the SES [4].

* 0-7803-7952-7/03/$17.00 © 2003 IEEE.
The work described in this paper employed an ATRV-JR robot as the ego center. The robot was equipped with two cameras, seventeen ultrasonic sonar, and a laser range finder. The camera head was the center of the geodesic dome. Since most robots do not have 360-degree sensory data, the SES is an incomplete geodesic dome and is restricted to the vertices within the robot's sensory field. One camera is mounted on a pan-tilt head; therefore image features are stored at the vertex closest to the camera direction. The sonar and laser range finder provide data around the robot's equator, thus the SES equator [4].

The SES was implemented using OpenGL® and Visual Basic™. This implementation is compatible with the Intelligent Robotics Laboratory’s agent-based software architecture programming environment, the Intelligent Machine Architecture (IMA) [5]. An octahedron-based tessellated dome was used. Figure 1 provides several SES views including images on nodes as well as sonar and laser data along the equator.

Figure 1. Sensory EgoSphere instances.

3. HUMAN-ROBOT INTERFACE

The human-robot interface was programmed using the Intelligent Machine Architecture (IMA). IMA allows distributed software agents to concurrently execute while facilitating inter-agent communication. The graphical based HRI includes an SES agent, a map agent, a sonar agent, a laser agent, and a camera agent. This interface was based on the work of Nilas et. al. [6].

The ATRV-JR mobile robot has a sensor suite providing odometry and heading \((x, y, \theta)\), compass data, GPS, DGPS, ultrasonic sonar data, laser range data, a forward facing camera, and a backward facing camera. The laser range finder is mounted on the front of the robot. The forward facing pan-tilt-zoom camera system provides a high-speed range of \(-100\) to \(110\) degrees. This work required the use of the odometry and heading, compass, ultrasound, laser, and forward facing camera information.

The original HRI, shown in Figure 2, provided the user with an a priori environmental map, the forward facing camera image, and displays of the sonar, laser, and compass readings. The map indicates the robot position and various detected landmarks.

As Figure 3 shows, the SES display was added to the original human-robot interface provided in Figure 2. This display agent communicates with the other sensory and HRI agents. The interface agents provide sensory data displays including the camera, sonar, laser, and compass displays.

4. EXPERIMENTAL DESIGN

Twenty-seven novice robotics users from the Nashville community participated in the evaluation. The ability to visualize 3-D relationships was deemed important given the remote operation of a mobile robot. Participants’ spatial reasoning abilities were measured via a spatial rotation test. A pre-experimental questionnaire determined their familiarity with computers, video games, mobile robots, and graphical user interfaces.

The experimental design required each user to complete tasks with both interfaces (Figures 2 and 3). The experiment consisted of a set of training tasks and a set of evaluation tasks. Each task set required activities with both interfaces. The task and interface presentations were randomized over all participants. There were two evaluation sessions.

The first session included an orientation followed by a training session. Each participant received a fifteen-minute training session. The participants then completed one of the two training tasks, and then repeated the training task with the
removing interface. During the second session, the participants completed one of the two-evaluation tasks followed by the same task with the second interface. The participants were to complete all four tasks. During the task execution, quantitative data was collected via automatic data recording. After each task completion a post-task questionnaire was completed. At the end of the second session a post-experimental questionnaire was completed.

The training task required participants to search for environmental landmarks via the interface displays. The evaluation task required participants to teleoperate the robot along a defined path of approximately seventy meters. During this task participants were to locate pre-defined landmarks. Natural landmarks found in a building; such as people, doors, and water fountains were the only obstacles in the environment. The landmarks were located along the defined path and in corners, doorways, and side hallways. The participants provided a navigation command and the robot moved to the defined point and then signaled the participant. During all tasks, the participants were able to change the data display views.

The participants provided navigation commands using point and click interaction on the environment map. The move to point navigation method required the definition of via points. The participants selected object icons in order to command the robot to go to a particular object.

5. DATA ANALYSIS AND RESULTS
The training tasks involved determining the robot’s position via the interface displays. The teleoperation tasks entailed driving the robot through an obstacle course while documenting all significant objects. This section discusses some of the results, full details can be found in [7].

Although twenty-seven individuals participated, the statistical analysis was performed on the data from the ten participants who completed both teleoperation tasks with no major system or hardware failures. This group included five males and five females. This group contained two participants with low spatial reasoning, four participants with average spatial reasoning, and four with high spatial reasoning abilities. The participant ages ranged between 18 and 70 years, with an average age of 30. Due to the small sample size, non-parametric evaluations were performed, such as the Kruskal-Wallis Rank and Spearman Rank Correlation tests.

A training task score was calculated based upon the robot’s placement, orientation, and location as well as the color of landmarks around the robot. The score for the teleoperation task was calculated based upon the placement and color of landmarks. A comparison of task scores across the interfaces was used to evaluate the participants’ situational awareness. The raw data showed that the training task scores were higher with the original interface, as shown in Table 1. Conversely the results from the teleoperation task found a higher overall score for the enhanced interface, as shown in Table 2. These results may imply that the enhanced interface is more useful when the robot is in motion but these results were not statistically significant.

<table>
<thead>
<tr>
<th>Training Task</th>
<th>Original Interface</th>
<th>Enhanced Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robot Placement</td>
<td>100</td>
<td>87.5</td>
</tr>
<tr>
<td>Robot Orientation</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Cone Placement</td>
<td>89.58</td>
<td>67.71</td>
</tr>
<tr>
<td>Cone Color Scores</td>
<td>95.83</td>
<td>86.46</td>
</tr>
<tr>
<td>Driving Direction</td>
<td>85</td>
<td>97.14</td>
</tr>
<tr>
<td>Overall Score</td>
<td>93.98</td>
<td>81.4</td>
</tr>
</tbody>
</table>

As Table 1 demonstrates, the training task sub-scores rated the original interface higher for the robot placement, robot orientation, cone placement, and cone color scores. The driving direction score was the only score for which the enhanced interface scored higher during the training tasks. The teleoperation sub-task score results differed, as shown in Table 2. The cone color score was higher for the original interface but the cone placement score was higher for the enhanced interface.

<table>
<thead>
<tr>
<th>Teleoperation Task</th>
<th>Original Interface</th>
<th>Enhanced Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cone Placement</td>
<td>67.14</td>
<td>78.57</td>
</tr>
<tr>
<td>Cone Color Scores</td>
<td>92.85</td>
<td>84.29</td>
</tr>
<tr>
<td>Overall Score</td>
<td>80</td>
<td>81.43</td>
</tr>
</tbody>
</table>

An analysis of the task score versus the number of camera clicks found a majority of negative correlations, indicating that increased camera usage decreased the task scores. The analysis of the training task with the original interface found a negative correlation between the driving direction score and the total pan clicks (r = -0.859, p = 0.029). There were negative correlations between the driving direction score and the total reset clicks (r = -0.959, p = 0.002) as well as the driving direction score and total camera clicks (r = -0.826, p = 0.043). The original interface training task evaluation found three negative correlations: total tilt clicks and driving direction score (r = -0.987, p = 0.0), total zoom-out clicks with the robot placement score (r = -0.764, p = 0.046), and the total reset clicks with the driving direction score (r = -0.956, p = 0.003). A negative correlation between the total zoom-out clicks and the overall score (r = -0.748, p = 0.013) was found for the teleoperation task using the enhanced interface. Finally, there was a positive correlation for the teleoperation task using the enhanced interface between the cone placement score and the total reset clicks (r = 0.717, p = 0.02).

The task score decreased with increased SES usage for the training and teleoperation tasks with the enhanced interface. Several negative correlations were found for the training task: total pan left clicks vs. the cone color score (r = -0.679, p = 0.064), total pan right clicks vs. the robot
results suggest that the enhanced interface may reduce the quantitative and visual lexical processing ratings. These spatial attentive, spatial quantitative, visual lexical, visual training task resulted in higher manual, short-term memory, between the interfaces. The original interface during the not significant.

Correlations for the teleoperation task were found between the spatial reasoning score and total SES clicks with the enhanced interface were the scan (r = 0.683, p = 0.037) and reset (r = 0.894, p = 0.026).

A negative correlation existed between the overall MRQ rating and the task score during the teleoperation task using the original interface (r = -0.77, p = 0.009). Additionally, a negative correlation existed between the overall MRQ rating and the overall training task score when using the enhanced interface (r = -0.72, p = 0.04). There was a positive correlation between the driving direction score and the spatial quantitative sub-process (r = 0.88, p = 0.009) for the training task with the enhanced interface. A positive correlation existed between the driving direction score and the visual temporal process for the enhanced interface during the training task (r = 0.76, p = 0.046). There were no correlations for the original interface during the teleoperation task.

The NASA-TLX [9] tool measures perceived workload. The participants completed the first portion of the analysis, ranking each tool component on the scale between 0 and 100. The participants did not complete the pair wise comparison selection. The overall workload rating was determined by averaging all sub-scale responses.

The following workload sub-ratings were rated higher during the training task for the enhanced interface over the original interface: necessary thinking (original: 51.2, enhanced: 57.6), task difficulty (original: 26.8, enhanced: 29.1), physical effort (original: 1.25, enhanced: 1.5), and stress level (original: 2.38, enhanced: 6.88). The enhanced interface exhibited a lower overall perceived workload for the teleoperation task but not for all individual measurements. The enhanced interface rated higher for the frustration (original: 17.3, enhanced: 33.6) and stress (original: 13.0, enhanced: 17.5) levels.

There were negative correlations between the number of SES clicks and the NASA-TLX ratings. For example the frustration level was reduced with increased SES use (r = -0.83, p = 0.002) for the training task using the enhanced interface. The NASA-TLX ratings with the training task also demonstrated positive correlations for the SES for the enhanced interface. For example, the task difficulty with total zoom-in clicks (r = 0.71, p = 0.04), and the mental effort and the scan clicks (r = 0.719, p = 0.04). A negative correlation existed between total pan right clicks and necessary thinking (r = -0.636, p = 0.04) for the teleoperation task using the enhanced interface. Additionally, there was a positive correlation between total scan clicks and the mental effort (r = 0.66, p = 0.04) for the teleoperation task using the enhanced interface.

Several positive correlations existed between total camera clicks and the NASA-TLX sub-ratings. The results with the original interface during the training task found a correlation between the necessary thinking and total zoom-out clicks (r = 0.88, p = 0.02), and the time required with total reset clicks (r = 0.893, p = 0.02). The results for the enhanced interface during the same task found positive correlations between the time required and total zoom-in clicks (r = 0.861, p = 0.013), the mental effort and total zoom-in clicks (r = 0.975, p = 0.0), the physical effort with total pan clicks (r = 0.77, p = 0.04), and the frustration level with total tilt clicks (r = 0.788, p = 0.035). Correlations existed for the original interface during the teleoperation task between total zoom-in clicks and the time required (r = 0.664, p = 0.036) and total zoom-out clicks and time pressure (r = 0.693, p = 0.026).
There were no positive correlations for the teleoperation task with the enhanced interface.

It was found that increased map clicks decreased the NASA-TLX workload rating for the teleoperation task with the original interface. There were several negative correlations between the NASA-TLX and the number of map clicks when using this interface. Negative correlations existed between necessary thinking and total add icon clicks ($r = -0.74$, $p = 0.021$), the frustration level and total add icon clicks ($r = -0.67$, $p = 0.05$) as well as between the overall workload rating and total add icon clicks ($r = -0.68$, $p = 0.04$). Positive correlations between the overall rating with total map ($r = 0.67$, $p = 0.05$) and add icon ($r = 0.691$, $p = 0.039$) clicks existed for the enhanced interface.

Correlations between the number of SES clicks and the NASA-TLX workload rating found no consistent positive or negative correlation for either set of tasks.

6. DISCUSSION
In order to evaluate the first hypothesis, the Multiple Resource Questionnaire (MRQ) [8] and NASA-TLX [9] methodologies were administered. The purpose of the MRQ evaluation was to determine if the enhanced interface reduced the resources participants used to complete a task. The assumption was that reduced resources would imply reduced perceived mental workload. It was shown via the correlation analysis that a relationship between the resources and workload existed.

A comparison of participants’ responses found a higher numerical value for a particular resource implied that the participant used that resource more to complete a task independent of task order. In a comparison of the enhanced and original interfaces, it was shown that the enhanced interface required fewer multiple resources. This was true for all categories except for spatial emergent. Since the enhanced interface included the SES, this may have accounted for the increased resource usage with the enhanced interface.

The result for the teleoperation tasks was contradictory. The manual resources were the same for both interfaces. The original interface had higher spatial quantitative and visual lexical resources. The remaining resource ratings were higher for the enhanced interface, including the overall rating. The MRQ results disprove the concept that the enhanced interface reduced multiple resources usage. The enhanced interface actually increased the multiple resource demands by approximately 5%. However, the training task showed a resource demand reduction by approximately 11%. This increase may exist because the SES did not provide as much assistance when the robot was moving, therefore there was an increase in resource usage. The teleoperation tasks when completed with the enhanced interface may have increased mental workload based upon the increased resources.

The hypothesis was that the addition of the SES display would reduce perceived mental workload. The enhanced interface for the training task demonstrated higher demands for necessary thinking, task difficulty, physical effort, and stress level. These findings may be due to the addition of the SES display.

In a comparison of the interfaces for the teleoperation task, it was found that the enhanced interface received higher ratings for the frustration and stress levels. These findings could be attributed to the odometry error as well as the SES display. The overall comparison of the interfaces showed that the perceived mental workload fell with the enhanced interface by approximately 13%. This result does imply verification that the enhanced interface would reduce the perceived mental workload.

With respect to correlation analysis between the MRQ and the NASA-TLX, there were several positive as well as negative correlations. The positive correlations suggest that perceived workload might be related to the corresponding MRQ processes. Several negative correlations also existed suggesting that it may not be possible to predict perceived workload from some MRQ resources. Therefore, the relationship between the two tools is inconclusive.

In conclusion, the raw data implies confirmation of the hypothesis that the SES display would decrease perceived mental workload but the analysis did not statistically support this hypothesis.

The three levels of situation awareness are perception, comprehension, and prediction [10]. This work proposed that the addition of the SES would move the participants’ situation awareness level from the perception to the comprehension level; therefore increasing the participants’ situation awareness. Situation awareness was evaluated by examining the task scores. For the two training tasks, the theory was that the cone color score might not differentiate between the two tasks, as this would be considered the perception level. However, it was believed that the remaining scores would improve with the enhanced interface. These scores correspond to the comprehension level. The results found that the enhanced interface only improved the driving direction score. This improvement suggests that the second hypothesis may be partially validated.

With respect to the teleoperation tasks, the cone color score represented the situational awareness perception level. The cone placement score should have improved with the addition of the SES display. The results found that there was on average a twenty-one-point improvement for the cone placement score with the enhanced interface. Therefore, it was suggested that the raw score for the enhanced interface improved situation awareness in the cone placement task. In summary, the raw data weakly suggests that the hypothesis is correct for both tasks.

7. CONCLUSIONS AND FUTURE WORK
The user study did not statistically support the research hypotheses, but the raw data did weakly imply confirmation of the hypotheses. There is need for additional well-controlled
evaluations. The results related to perceived workload and situation awareness along with the usability data suggest modifications to the interface and SES display. New evaluations with tasks that are more stringent on a larger sample size should be completed. Additionally, some influences on the workload, task time, and task score should be minimized.

This work has presented an enhanced HRI that included the addition of the SES. A statistical analysis was performed using the data from ten participants who completed both teleoperation tasks with no major failures. The non-parametric analysis included the Spearman rank correlation and the Kruskal-Wallis rank test. These results were analyzed in order to determine the validity of the research hypotheses.

ACKNOWLEDGEMENTS
The authors wish to thank Phongchai Nilas for his assistance when developing the interfaces evaluated by this work.

REFERENCES

