EECE 276
Embedded Systems

Techniques:
FSMs and StateCharts
Finite State Machines

● Finite state model
 » States: States of the system (finite set)
 » Initial State: a single element of States
 » Terminal States: a subset of States for “stopping”
 » Events: cause state transitions
 » State transition function:
 \[F: \text{States} \times \text{Events} \to \text{States} \]

● Variants:
 » Self-loops
 » Deterministic/non-deterministic transitions
FSM Example: Fighter aircraft

States:
- TAK: takeoff
- NAV: navigate
- NAE: navigate/evade
- NAA: navigate/attach
- LAN: land

Events:
- MA: mission assignment
- LO: enemy lock-on
- TD: target detected
- EE: enemy evaded
- ED: enemy destroyed
- MC: mission completed

Self-loops are not shown!
FSM Example: Table

- Tabular form

<table>
<thead>
<tr>
<th></th>
<th>MA</th>
<th>LO</th>
<th>TD</th>
<th>MC</th>
<th>EE</th>
<th>ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAK</td>
<td>NAV</td>
<td>TAK</td>
<td>TAK</td>
<td>TAK</td>
<td>TAK</td>
<td>TAK</td>
</tr>
<tr>
<td>NAV</td>
<td>NAV</td>
<td>NAE</td>
<td>NAA</td>
<td>LAN</td>
<td>NAV</td>
<td>NAV</td>
</tr>
<tr>
<td>NAE</td>
<td>NAE</td>
<td>NAE</td>
<td>NAE</td>
<td>NAE</td>
<td>NAA</td>
<td>NAE</td>
</tr>
<tr>
<td>NAA</td>
<td>NAA</td>
<td>NAE</td>
<td>NAA</td>
<td>NAA</td>
<td>NAA</td>
<td>NAV</td>
</tr>
<tr>
<td>LAN</td>
<td>LAN</td>
<td>LAN</td>
<td>LAN</td>
<td>LAN</td>
<td>LAN</td>
<td>LAN</td>
</tr>
</tbody>
</table>

- Extensions:
 - Time triggers, variables.
FSM Example
Statecharts

- Statecharts extend FSMs with
 - Hierarchy: containment of states
 - Orthogonality: concurrent states
 - Broadcast communication: events triggering events

Event X triggers a transition if condition C is true. When the transition is taken, event Y is broadcast.
Statecharts

- Hierarchy

A has two sub-states: A1(initial), A2
B has two sub-states: B1, B2(initial)
Statecharts

- Orthogonality

OR-state “C”: The system is either in A or B, but never in both.

AND-state Z: The system is in both X and Y
Statechart Summary

Summary:

- Concise notation to describe complex reactive systems
- Easy to generate code from
- Standardized (UML)
Statechart Example

Traffic light behavior

- **NS**
 - **Preventing for green**
 - start NS /
 - **Red**
 - entry / start EW
 - after(5 secs) /
 - **Yellow**
 - after(30 secs) /
 - after(5 secs) /
 - **Green**
- **EW**
 - **Preventing for green**
 - start EW /
 - after(5 secs) /
 - **Red**
 - after(5 secs) / start NS
 - after(30 secs) /
 - after(5 secs) /
 - **Yellow**
 - after(30 secs) /