FPGA Design
EECE 277

Implementation Technology

Dr. William H. Robinson
January 24, 2005

http://eecs.vanderbilt.edu/courses/eece277/

Topics

“If at first you don’t succeed, try, try again.”
– Thomas H. Palmer (1782 - 1861)

• Administrative stuff
 – Homework #2 Assigned (Chapter 3)
 – UP2 Kits and lab partners
 – Complete tutorials in Appendices B, C, and D
 – Collect Homework #1

• Transistors
• Integrated circuits
• Programming technology

Technology Timeline

- Transistors
- ICs (General)
- SRAMs & DRAMs
- Microprocessors
- CPLDs
- ASICs
- FPGAs

- White bar represents technology introduction
- Gray bar represents widespread use

Translating Voltage Levels

- $V_{1,\text{min}}$ represents lowest voltage still counted as logic ‘1’
- $V_{0,\text{max}}$ represents highest voltage still counted as logic ‘0’

V_D (Gnd)

Logic value 1

Undefiend

Logic value 0

V_{DD}

Fundamentals of Digital Logic
Chapter 3
Copyright © 2005 McGraw-Hill
NMOS Transistors

- Turned on when gate terminal is high
- When on, drain is pulled down to GND
- Cannot be used to pull drain completely up to \(V_{DD} \)

\[V_G = 0 \text{ V} \]
\[V_D = 0 \text{ V} \]

Closed switch when \(V_G = V_{DD} \)
Open switch when \(V_G = 0 \text{ V} \)

PMOS Transistors

- Turned on when gate terminal is low
- When on, drain is pulled up to \(V_{DD} \)
- Cannot be used to pull drain completely down to GND

\[V_G = V_{DD} \]
\[V_D = 0 \text{ V} \]

Open switch when \(V_G = V_{DD} \)
Closed switch when \(V_G = 0 \text{ V} \)

CMOS Logic Gates

- **Pull-up network**: PMOS transistors
- **Pull-down network**: NMOS transistors

In CMOS Logic Gates

- Current flows more readily in NMOS transistors than PMOS transistors
- For transistors of equal size, an NMOS transistor has a current capacity 2x – 3x greater than a PMOS
- For equal pull-up/pull-down characteristics, PMOS transistors are sized 2x – 3x larger than NMOS transistors
(a) Circuit

(b) Truth table and transistor states

CMOS NAND Gate

(a) Circuit

(b) Truth table and transistor states

CMOS NOR Gate

(a) Circuit

(b) Truth table and transistor states

7400 Series Chip

(a) Dual-inline package

(b) Structure of 7404 chip
Using TTL Chips for Logic Functions

Figure 3.22. An implementation of $f = x_1x_2 + x_2x_3$.

Integration Levels

- **Small Scale Integration (SSI)**
 - One to ten devices

- **Medium Scale Integration (MSI)**
 - Ten to 100 devices

- **Large Scale Integration (LSI)**
 - 100 to 100,000 devices

- **Very Large Scale Integration (VLSI)**
 - Greater than 100,000 devices

Random Access Memory (RAM)

- **Static RAM (SRAM)**
 - Constructed from circuits similar to D flip-flop
 - Contents retained while power is on
 - Used in Level 2 cache because of fast access times

- **Dynamic RAM (DRAM)**
 - Constructed with a transistor and capacitor
 - Contents must be "refreshed" due to charge leakage
 - Used in main memory because of high density

The Need for More Integration

We need to combine gates to provide a useful function that requires a limited number of external connections (pins).

- Using SSI, 5 million NAND gates would require 15,000,002 pins
- Infeasible for pin spacing requirements
Static RAM (SRAM)

- Six transistors in cross-connected fashion
 - Provides regular AND inverted outputs
 - Implemented in CMOS process

Dynamic RAM (DRAM)

- SRAM cells exhibit high speed/poor density
- DRAM: simple transistor/capacitor pairs in high density form

Technology Trends: Microprocessor Capacity

- Die size: 2X every 3 yrs
- Line width: halve / 7 yrs

Programmable Logic Devices (PLDs)

- General-purpose chip for implementing logic circuitry
- Customizable “black box” with gates and switches
Taxonomy

- **PLDs**
 - SPLDs
 - CPLDs
- **PROMs**
- **PLAs**
- **PALs**
- **GALs**
- **etc.**

Acronyms

- **SPLD** – Simple PLD
- **CPLD** – Complex PLD
- **PROM** – Programmable Read-Only Memory
- **PLA** – Programmable Logic Array
- **PAL** – Programmable Array Logic
- **GAL** – Generic Array Logic

Adding “Programmable” in FPGA

- Potential links
- Logic 1
- Pull-up resistors
- a \(\overline{\text{NOT}} \) \(\overline{\text{AND}} \) \(y = 1 \) (N/A)
- b \(\overline{\text{NOT}} \)

Unprogrammed Fusible Links

- Device manufactured with all links in programmable path (short circuit)
- Logic 1
- Pull-up resistors
- a \(F_{\text{fus}} \) \(\overline{\text{NOT}} \) \(\overline{\text{AND}} \) \(y = 0 \) (N/A)
- b \(F_{\text{fus}} \) \(\overline{\text{NOT}} \)
Programmed Fusible Links

- Disconnected fuses act as open circuits
- One-Time Programmable (OTP)

\[y = a \lor !b \]

Pull-up resistors

\[\text{Logic 1} \]

Unprogrammed Antifuse Links

- Device manufactured with high resistance in configurable path (open circuit)

\[y = 1 \text{(N/A)} \]

Programmed Antifuse Links

- Connections are “grown”
- One-Time Programmable (OTP)

\[y = !a \lor b \]

Growing an Antifuse

(a) Before programming

(b) After programming
Erasable PROM (EPROM)

- Requires ultraviolet (UV) radiation to remove stored charge on floating gates

Electrically Erasable PROM (E²PROM)

- Second transistor used to electrically erase the cell

Programming Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Symbol</th>
<th>Predominantly associated with ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusible-link</td>
<td>- (\text{--}) -</td>
<td>SPLDs</td>
</tr>
<tr>
<td>Antifuse</td>
<td>-O----</td>
<td>FPGAs</td>
</tr>
<tr>
<td>EPROM</td>
<td>-[]</td>
<td>SPLDs and CPLDs</td>
</tr>
<tr>
<td>E²PROM/FLASH</td>
<td>-[]</td>
<td>SPLDs and CPLDs (some FPGAs)</td>
</tr>
<tr>
<td>SRAM</td>
<td>(\text{RAM})</td>
<td>FPGAs (some CPLDs)</td>
</tr>
</tbody>
</table>

Programmable Read-Only Memory (PROM)

- Fixed AND array with programmable OR array
Programmable Logic Array (PLA)

- Both AND array and OR array are programmable

![Programmable Logic Array Diagram](image)

Slower device because signals pass through programmed links

Programmable Array Logic (PAL)

- Programmable AND array with fixed OR array

![Programmable Array Logic Diagram](image)

Complex Programmable Logic Device (CPLD)

- PAL-like block
- Interconnection wires
- I/O block

Summary

- VLSI technology allows more functionality to be incorporated on a single chip
- CMOS circuits use pull-up networks (PMOS) to pass logic ‘1’ and pull-down networks (NMOS) to pass logic ‘0’
- FPGAs typically use either antifuse or SRAM technology for configuration