Topics

• Reminders
 – Homework due this Friday (10-10)
 – Exam 2 on next Friday (10-17)

• ALU Design

• Memory

• CPU chips and buses

Datapath of IJVM

• Microarchitecture (Level 1)
 – Formed using digital logic (level 0)
 – Includes decoders, adders, registers, etc.
Control Signals for ALU Functions

<table>
<thead>
<tr>
<th>F_2</th>
<th>F_1</th>
<th>ENA</th>
<th>ENB</th>
<th>INVA</th>
<th>INC</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A + B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A + B + 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A + 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B + 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>B - A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B - 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A AND B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A OR B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1 - 1</td>
</tr>
</tbody>
</table>

Figure 4-2. Useful combinations of ALU signals and the function performed.
Combining Bit Slices for ALU

Set Reset (SR) Latch

- Contains cross-coupled gates to remember state
- $R = S = 0$ causes the latch to “hold” its current value
- $S = 1$ (while $R = 0$) sets Q to 1
- $R = 1$ (while $S = 0$) resets Q to 0
- $R = S = 1$ causes instability in the latch
Clocked SR Latch

- Useful to prevent latch from changing state except at certain times
- Add **AND** gates to enable S and R on clock high
- What about \(R = S = 1 \)?
 - causes instability on cross-coupled NOR gates when clock is high

Clocked Data (D) Latch

- Resolve SR instability by preventing it from occurring
- Use one input (D) for the latch
- True 1-bit memory
D Flip-Flop

- Difference between flip-flop and latch
 - A flip-flop is edge triggered
 - A latch is level triggered

Registers

- D flip-flops combined to operate as a group
- Forms an 8-bit register (1 byte)
- Use additional chips in parallel for larger registers
Memory Organization

- Input bits for memory write
- 2:4 Decoder using address lines
- Chip Select Read Output Enable
- Output bits for memory read using non-inverting buffer

Memory Chips

- Regular memory structure allows extension to larger sizes
 - Add rows (and associated connections) to increase number of words
 - Add columns (and associated connections) to increase number of bits per word

- Terminology
 - Asserted – signal set to cause some action
 - Negated – signal not set for an action
Random Access Memory (RAM)

- **Static RAM (SRAM)**
 - Constructed from circuits similar to D flip-flop
 - Contents retained while power is on
 - Used in level 2 cache because of fast access times

- **Dynamic RAM (DRAM)**
 - Constructed with a transistor and capacitor
 - Contents must be “refreshed” due to charge leakage
 - Used in main memory because of high density

Read-Only Memory (ROM)

- **Programmable ROM (PROM)**
 - Programmed once using fuses

- **Erasable PROM (EPROM)**
 - Can be reused after erasing with UV light

- **Electrically Erasable PROM (EEPROM)**
 - Electrical pulses on special input pin erases device
 - Flash memory is a type of EEPROM that is block erasable
Comparison of Memory Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Category</th>
<th>Erasure</th>
<th>Byte alterable</th>
<th>Volatile</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>Read/write</td>
<td>Electrical</td>
<td>Yes</td>
<td>Yes</td>
<td>Level 2 cache</td>
</tr>
<tr>
<td>DRAM</td>
<td>Read/write</td>
<td>Electrical</td>
<td>Yes</td>
<td>Yes</td>
<td>Main memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Read-only</td>
<td>Not possible</td>
<td>No</td>
<td>No</td>
<td>Large volume appliances</td>
</tr>
<tr>
<td>PROM</td>
<td>Read-only</td>
<td>Not possible</td>
<td>No</td>
<td>No</td>
<td>Small volume equipment</td>
</tr>
<tr>
<td>EPROM</td>
<td>Read-mostly</td>
<td>UV light</td>
<td>No</td>
<td>No</td>
<td>Device prototyping</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Read-mostly</td>
<td>Electrical</td>
<td>Yes</td>
<td>No</td>
<td>Device prototyping</td>
</tr>
<tr>
<td>Flash</td>
<td>Read/write</td>
<td>Electrical</td>
<td>No</td>
<td>No</td>
<td>Film for digital camera</td>
</tr>
</tbody>
</table>

Computer Buses

- **Bus** – common electrical pathway between multiple devices
Bus Clocking

- **Synchronous**
 - Uses master clock driven by crystal oscillator
 - All transactions occur as multiples of “bus cycles”
 - Timing diagram defines the bus protocol *(Fig 3-37)*

- **Asynchronous**
 - Does not require a master clock
 - Transactions can use any length required
 - Full handshake defines the bus protocol *(Fig 3-38)*

Bus Arbitration

Figure 3-39. (a) A centralized one-level bus arbiter using daisy chaining. (b) The same arbiter, but with two levels.
Example Buses

- **Industry Standard Architecture (ISA)**
 - Found in every Intel-based PC
 - Maximum bandwidth of 16.7 MB/sec

- **Peripheral Component Interconnect (PCI)**
 - Patents in public domain to encourage third-party use
 - Maximum bandwidth of 528 MB/sec

- **Universal Serial Bus (USB)**
 - Industry consortium design for low-speed I/O devices
 - Bus protocol similar to network with data packets contained in frames
 - Maximum bandwidth of 1.5 MB/sec

Pentium II System Architecture

Uses multiple buses with bridges to connect them