Topics

• Reminders
 – Homework due this Friday (10-10)
 – Exam 2 on next Friday (10-17)

• Memory

• Buses

• Microarchitecture level

Random Access Memory (RAM)

• Static RAM (SRAM)
 – Constructed from circuits similar to D flip-flop
 – Contents retained while power is on
 – Used in level 2 cache because of fast access times

• Dynamic RAM (DRAM)
 – Constructed with a transistor and capacitor
 – Contents must be “refreshed” due to charge leakage
 – Used in main memory because of high density
Read-Only Memory (ROM)

- **Programmable ROM (PROM)**
 - Programmed once using fuses

- **Erasable PROM (EPROM)**
 - Can be reused after erasing with UV light

- **Electrically Erasable PROM (EEPROM)**
 - Electrical pulses on special input pin erases device
 - Flash memory is a type of EEPROM that is block erasable

Computer Buses

- **Bus** – common electrical pathway between multiple devices
Bus Clocking

- **Synchronous**
 - Uses master clock driven by crystal oscillator
 - All transactions occur as multiples of “bus cycles”
 - Timing diagram defines the bus protocol (Fig 3-37)

- **Asynchronous**
 - Does not require a master clock
 - Transactions can use any length required
 - Full handshake defines the bus protocol (Fig 3-38)

Synchronous Timing
Asynchronous Timing

Example Buses

- **Industry Standard Architecture (ISA)**
 - Found in every Intel-based PC
 - Maximum bandwidth of 16.7 MB/sec

- **Peripheral Component Interconnect (PCI)**
 - Patents in public domain to encourage third-party use
 - Maximum bandwidth of 528 MB/sec

- **Universal Serial Bus (USB)**
 - Industry consortium design for low-speed I/O devices
 - Bus protocol similar to network with data packets contained in frames
 - Maximum bandwidth of 1.5 MB/sec
Registers

- D flip-flops combined to operate as a group
- Forms an 8-bit register (1 byte)
- Use additional chips in parallel for larger registers

Combining Bit Slices for ALU
Microarchitecture Level

- Purpose: implement the ISA level above it
- Design depends on several factors
 - The ISA being implemented (CISC vs. RISC)
 - Cost and performance goals of the computer

CISC Architectures

- S/W interpreter increased the computing power of simple H/W design

- Provided 200 – 300 instructions
 - But how many of those were really used?

- Must still provide support for legacy code
 - Intel processors are CISC/RISC hybrid
RISC Design Principles

- **All instructions directly executed by H/W**
 - Eliminate overhead of interpretation

- **Maximize rate instructions are issued**
 - Utilize parallelism within program

- **Instructions should be easy to decode**
 - Quickly determine resources required

- **Only loads and stores should reference memory**
 - Memory access is longer and unpredictable

- **Provide plenty of registers**
 - Avoid memory access penalty for flushing data set

Datapath of IJVM

- **Example ISA: IJVM**
 - Subset of Java Virtual Machine (JVM)
 - Only integer instructions

- **Example microarchitecture**
 - Microprogram (in ROM)
 - Loop to fetch, decode, and execute instructions
Datapath Buses

- **A Bus**
 - Only connected to H register
 - Becomes the left input of the ALU

- **B Bus**
 - Connected to all other registers except MAR
 - Becomes the right input to the ALU
 - Only want one register enabled

- **C Bus**
 - Connected to all registers
 - Writes output to all enabled registers

Datapath Registers (Memory Control)

- **MAR**
 - Memory Address Register
 - Contains word addresses for memory references

- **MDR**
 - Memory Data Register
 - Contains data words to/from memory references

- **PC**
 - Program Counter
 - Points to next instruction to be executed

- **MBR**
 - Memory Buffer Register
 - 8-bit register used to read a single byte from memory
Datapath Registers (Stack)

- **SP**
 - Stack Pointer
 - Points to the highest word of the local variable frame
- **LV**
 - Local Variable pointer
 - Contains the address of the first location in the local variable frame
- **CPP**
 - Constant Pool Pointer
 - Contains the address of the first word of the constant pool
- **TOS**
 - Top Of Stack
 - Contains value on top of memory stack

Datapath Registers (Miscellaneous)

- **OPC**
 - Couldn’t find what it stood for!
 - A temporary (scratch) register without a preassigned use
- **H**
 - Holding register
 - Attached to the left input of the ALU
Datapath Control Signals

- **B Bus Enable**
 - Enable register onto B bus
- **C Bus Enable**
 - Write C bus into register
- **ALU Control**
 - Six signals from Fig 4-2
- **Shifter Control**
 - SLL8 and SRA1

- What are **N** and **Z** from the ALU?
 - Used for conditional tests

Control Signals for ALU Functions

![Control Signals for ALU Functions](image)
Mic-1 Simulator for Class

Java-based simulator which implements the Mic-1 microarchitecture described in Chapter 4

- http://www.ontko.com/mic1/

Programming assignments will use this!!!