FPGA Design
EECE 277

Choosing the Right Device

Dr. William H. Robinson
April 11, 2005

http://eecs.vanderbilt.edu/courses/eece277/

Topics

“There are always two choices. Two paths to take. One is easy. And its only reward is that it's easy.”

– Anonymous

• Administrative stuff
 – Grading of Exam 2
 – Laboratory Assignment #3 has been graded
 – Proposals for final project
 – In-Class Laboratory Day on Wednesday

• Design questions and specifications

• Evaluating alternatives

Final Project Selections

• Team 1 – Tim & Leighanna
 – Tic-Tac-Toe

• Team 2 – Dolores & Chris N.
 – Web-Based Server

• Team 3 – George & Daniel
 – Music Synthesizer

• Team 4 – Chris Heath & Adam
 – Hamming Code Transceiver

• Team 5 – Brett & Adrian
 – Tic-Tac-Toe

• Team 6 – Anu & Chris Holt
 – RHBD of a DC/DC Switching Converter

• Team 7 – Julian & Raj
 – Single-Error Detection in ALU

• Team 8 – Efosa & Drew
 – Chutes and Ladders
Final Project Selections

- Team 9 – Ryan & Brian
 – War (The Card Game)

- Team 10 – Ezgi, Jason, Ian
 – Simon Game

- Team 11 – Andre & Stephen
 – Simon Game

Features of FPGAs

- Besides primitive logic elements and programmable routing, some FPGA families add other features

- Embedded memory
 – Many hardware applications need memory for data storage.
 – Many FPGAs include blocks of RAM for this purpose

- Dedicated logic for carry generation, or other arithmetic functions

- Phase locked loops for clock synchronization, division, multiplication

- Microprocessor cores

Choosing an FPGA

- Chip size is not everything

- Evaluate your design needs
 – Number of I/O pins
 – Available logic resources
 – Special functional blocks

- History with a vendor
Questions to Ask

• Estimate of ASIC equivalent gates

• Input/Output
 – Pin requirements
 – Interface technologies

• Acceptable packaging options

• Requirement for specialized functions
 – Gigabit transceivers, embedded MAC, embedded RAM, embedded µP cores, etc.

• Requirement for Intellectual Property (IP)

I/O Technology

• Input/Output (I/O) has become very complex
 – Used to only have to worry about TTL vs CMOS
 – TTL had current drive requirements, CMOS just voltage level requirements
 – Both used full swing signals (0 to Vdd, used to be 5 V)

• New issues in I/O technology
 – Limit voltage swing to speed up signaling
 – Voltage swing about a reference voltage instead of between 0 and Vdd
 – Differential signaling to reject noise
 – Termination required to prevent signal reflections from corrupting signals
FLEX 10K Device Family Overview

Table 2. FLEX 10K Device Overview (Part 2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>EPF10K70</th>
<th>EPF10K100</th>
<th>EPF10K100A</th>
<th>EPF10K100E</th>
<th>EPF10K130V</th>
<th>EPF10K130E</th>
<th>EPF10K200E</th>
<th>EPF10K200S</th>
<th>EPF10K250A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical gates (logic and RAM)</td>
<td>70,000</td>
<td>100,000</td>
<td>130,000</td>
<td>200,000</td>
<td>250,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic elements (LEs)</td>
<td>3,744</td>
<td>4,992</td>
<td>6,656</td>
<td>9,984</td>
<td>12,160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic array blocks (LABs)</td>
<td>468</td>
<td>624</td>
<td>832</td>
<td>1,248</td>
<td>1,520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded array blocks (EABs)</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>24</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total RAM bits</td>
<td>18,432</td>
<td>24,576</td>
<td>32,768</td>
<td>32,768</td>
<td>32,768</td>
<td>40,960</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to tables:
1. For designs that require JTAG boundary-scan testing, the built-in JTAG circuitry contributes up to 31,250 additional gates.
2. The greater number in this cell describes FLEX 10KE devices.

FLEX 10K Device Block Diagram

FLEX 10K Logic Array Block (LAB)

FLEX 10K Embedded Array Block (EAB)
Embedded Specialized Functions

- RAM blocks
- Multipliers
- Logic blocks

Hard Microprocessor Core

(a) One embedded core
(b) Four embedded cores

Altera’s Soft Microprocessor Core

- **NIOS II**
 - Features a general-purpose RISC CPU architecture
 - Three cores optimized for a specific price and performance range
 - Fast (Nios II/f) – less than 600 LEs
 - Economy (Nios II/e) – less than 1300 LEs
 - Standard (Nios II/s) – less than 1800 LEs
 - Supported by the Stratix and Cyclone FPGA families
 - Original NIOS processor supported by all FPGA families

(b) Four embedded cores

Intellectual Property (IP)

- Refers to any existing functional block (H/W)
- Can also take the form of software routines
- Sources of IP include
 - Internally created blocks from previous designs
 - FPGA vendors
 - Third-party IP providers

http://www.altera.com/products/ipprocessors/nios2/overview/n2-overview.html
Using IP in FPGA Design

- Generally encrypted by vendor
- Vendor has made effort to achieve optimal implementation

IP Core Generator

- Special parameterized tools that allow designers to specify functional elements, widths/depths, etc.

Speed Grades

- Databooks often list different speed grades for a part at the same temperature
- Simply test parts that come off the fabrication line and see how fast they are
 - Divide the parts into different speed bins
 - For three speed grades, a design goal might be to have 15% of your parts fall in the upper bin, 50% in the middle bin, and 25% in the lower bin
 - As the process matures, more and more fabricated parts will move into the upper speed bin, at which point you make a new upper speed bin.
 - Obviously, faster parts cost more (and are more profitable)

Selection of Speed Grade

- Rule of Thumb
 - Moving up a speed grade increases performance by 12 to 15 percent, but increases cost by 20 to 30 percent
 - If you can manipulate the architecture to improve performance by 12 to 15 percent, you can drop a speed grade and save 20 to 30 percent on cost
- For high volume, you want to use the lowest speed grade that is feasible
Summary

• Choosing the “right” FPGA is not easy!

• There are multiple dimensions to consider

• Most designs are I/O limited

• Be sure the device includes any specialized capabilities you need